THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Tutorial Classwork 0

- 1. For every set X, the cocountable topology is defined by $\mathfrak{T} = \{\emptyset, X\} \cup \{G \subset X \mid X \setminus G \text{ is countable}\}.$
 - (a) Show that the \mathfrak{T} is a topology.
 - (b) Show that if X is uncountable, then the cocountable topology is NOT a metric topology.
 - (c) How about if X is countable?
- 2. Let (X, \mathfrak{T}_d) and (X, \mathfrak{T}_ρ) be two topological spaces equipped with metrics d and ρ respectively. Show that if there exists k > 0 such that $d(x, y) \leq k\rho(x, y)$ for all $x, y \in X$, then $\mathfrak{T}_d \subset \mathfrak{T}_\rho$.
- 3. Let $X = (-\frac{\pi}{2}, \frac{\pi}{2})$ equipped with the standard metric d(x, y) = |x y|. Define $\rho : X \times X \to [0, \infty)$ by $\rho(x, y) = |\tan x \tan y|$.
 - (a) Show that (X, ρ) is a metric space.
 - (b) Show that the function $f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ defined by $f(x) = \tan x x$ is increasing. Hence, or otherwise, show that the metric topology \mathfrak{T}_{ρ} coincides with the standard topology \mathfrak{T}_{d} .
 - (c)* Recall that the set of real number (\mathbb{R}, d) is *complete*, i.e. every Cauchy sequence converges. Show that (X, d) is incomplete while (X, ρ) is complete.

(This question shows you that completeness is a property about metric but not topology.)

(d)* Given a metric space (X, d) and an open set $A \subset X$. In general (A, d) may not be complete. Can you define a new metric τ such that $\mathfrak{T}_d = \mathfrak{T}_{\tau}$ and (A, τ) is complete?